

Google Summer of Code 2017
Improvements in Vectorization and Parallelization of ROOT Math Libraries

Alejandro García Montoro

Table of Contents

Abstract 2

Description of the Proposal 3

Starting Point 3

Coding Plan and Methods 4

High-Priority Tasks 5

Completion of Parallelization and Vectorization of all the Fitting Methods
Available in ROOT 5

Adapt Gradient Function Interfaces for Thread-Based Parallelization and
Vectorization 5

Vectorization of TFormula and “Predefined ROOT Functions” 5

Vectorization of Most Used Mathematical and Statistical Functions in
ROOT::Math and TMath 6

Optional Tasks 6

Special Mathematical Functions 6

Statistical Functions 6

Timeline 6

Community Bonding Period (1st May - 29th May) 7

1st Coding Period (30th May - 26th June) 7

2nd Coding Period (30th June - 24th July) 7

3rd Coding Period (28th July - 29th August) 7

Schedule Conflicts 7

Management of Coding Project 8

Test 9

Student Information 12

Bio of Student 12

Contact Information 12

Student Affiliation 13

Abstract
This document describes the proposal that the author submits for the project Improvements
in vectorization and parallelization of ROOT Math libraries, from CERN-HSF organization.
This project aims to improve the efficiency of the mathematical functions and fitting methods
of ROOT, a software framework developed mainly by CERN, by means of parallelization and
vectorization of the corresponding code. Some work in this direction has already been done,
but there is still work to do as outlined by the task ideas: 1) Completion of parallelization and
vectorization of all the fitting methods available in ROOT, 2) Adapt gradient function
interfaces for thread-based parallelization and vectorization, 3) Vectorization of TFormula
and “predefined ROOT functions” and 4) Vectorization of most used mathematical and
statistical functions in ROOT::Math and TMath.
The first section of this document describes the proposal, studying first, in Starting Point
subsection, the current state of the code in order to understand the work that has to be done.
In the Coding Plan and Methods subsection, the main tasks are detailed, along with the
optional ones, outlining what needs to be done in order to implement the features proposed
by the project: specific files, classes and functions that will have to be modified or created
are discussed. All this work is then structured in the Timeline section, defining subtasks in a
per-week basis. Possible Schedule Conflicts are finally discussed. Subsection Management
of Coding Project details the methods of work (as the contact with the mentors or the
frequency of commits and pull requests) that will be followed in the coding periods. Finally,
Test subsection explains the test implemented by the author to get used to the codebase
and as a way for the mentors to know the author skills.
The last section, Student Information, details information about the author’s biography, how
to contact him and his affiliation.

http://hepsoftwarefoundation.org/gsoc/proposal_ROOTvectorization.html
http://hepsoftwarefoundation.org/gsoc/proposal_ROOTvectorization.html
https://github.com/xvallspl/root/tree/gsoc

Description of the Proposal
The project Improvements in vectorization and parallelization of ROOT Math libraries,
proposed by CERN-HSF organization and mentored by Xavier Valls Pla and Lorenzo
Moneta, aims to vectorize and parallelize the mathematical function interfaces as well as the
fitting functions of ROOT.
In this section I will study the work that has already been done in this direction, describe the
intended work that I plan to do in summer in the case I am selected and outline a timeline
with a set of deliverables scheduled.

Starting Point
The code implemented in summer will continue the work currently located in the GSoC
branch of Xavier Valls ROOT fork; this branch should be merged in the main ROOT repo by
the start of GSoC, and in fact some of the commits are already in ROOT master. A summary
of the work that has been done in the branch, and that could serve as an example for the
code that has to be implemented in summer, follows:

1. TF1 interface has been adapted to implement vectorized evaluations (see commit
56a31ba, merged in ROOT in 5c4caed). WrappedMultiTF1 has been generalised to
ease the implementation of different vectorization backends and types (see commit
116ffbe, merged in ROOT in 398101b).

2. Vc backend has already been linked to Mathcore (9cec295) and a new type
describing a vectorized double, Double_v, has been defined (9daf281).

3. Some interfaces of Fitter have been adapted to add vectorization (cee8a7f). The
classes to manage (un)binned data have been refactored and adapted (54243ee).

4. Chi2 fitting has been vectorized and parallelized (fbc96fa, 5bb680a and d121e3a; in
ec9911a Chi2 has been moved into Evaluate<T>, that will hold other evaluations, as
the LogLikelihood one).

5. Unbinned likelihood fit has been vectorized and parallelized (fac6143).
6. FitUtil has been adapted to allow parallelization (1ab4fa3 and 53d57cf, with

needed previous work on 86234a4 and specially e836b84).

1, 2 and 3, along with 6, code the basics needed for the actual implementation of the
vectorization and parallelization of ROOT. It is important to note in 2 that the linking of Vc
backend in Mathcore will be eventually generalized: VecCore should abstract the backend
used, so ROOT should not care about which one is being used.

4 and 5 are really good examples of the kind of work that will be done in summer. We see
that in order to vectorize and parallelize existing methods we will usually need to generalize
them, templating their definitions and adapting the existing code to use the APIs exposed by
vectorization and parallelization libraries used (vectorized types, functions and masks,
reduction maps…).

https://github.com/root-project/root/commit/398101b38d9bbd3d3aefa0686188cab53677e0f2
https://github.com/xvallspl/root/commit/1ab4fa33099f36521996c712d2ce0f57dc1c14d2
https://github.com/xvallspl/root/commit/5bb680aaec264175ca27d6aa0c57f94dc720109c
https://github.com/xvallspl/root/commit/fbc96fae82245310ebf80fb159fdd4bb826e6cb0
https://github.com/xvallspl/root/commit/56a31ba7bf0db513f00b755ac3e81da5b243902d
https://github.com/xvallspl/root/commit/9cec295c0d077d3dfb8a4c98203d26d43d5e14b8
https://github.com/xvallspl/root/commit/cee8a7f8e8660df4da89d001e87de720d92c53f4
https://github.com/xvallspl/root/commit/e836b843284c0d441d08b94c11bc9d6453eacc86
https://github.com/xvallspl/root/commit/d121e3a686cc8c47737faa4ba81a1c8e228318f1
http://hepsoftwarefoundation.org/gsoc/proposal_ROOTvectorization.html
https://github.com/xvallspl/root/commit/9daf281853651d0f12d19011312022a37b413416
https://github.com/xvallspl/root/tree/gsoc
https://github.com/root-project/root/commit/5c4caed364c6344d638800d96de0aee70865487a
https://github.com/xvallspl/root/commit/54243ee3d54581760b7fbcd533834b348fc6ea3d
https://github.com/xvallspl/root/commit/ec9911ad18e6ef3f872cf9dd2bb975aeb187f76a
https://github.com/xvallspl/root/tree/gsoc
https://github.com/xvallspl/root/commit/fac6143fb1e963fbf34daf53c770ae83d9ffcbb9
https://github.com/xvallspl/root/commit/116ffbe7aab169f4963b422be1f60679e6bbf9ae
https://github.com/xvallspl/root/commit/53d57cf977772255003b0796005fc709db90b095
https://github.com/xvallspl/root/commit/86234a430b1f647df3e7d4b2eb33741adbb7dcb6

This proposal takes the state of this branch as the starting point to accomplish the proposed
tasks.

Coding Plan and Methods
As a rule, the general coding plan for all the tasks will follow a simple workflow based on test
driven development:

1. Study of the task goal to obtain a detailed description of the work needed.
2. Design of the interfaces for the new (or adapted) code.
3. Implementation of the tests that will check that the code works as expected.
4. Implementation of the benchmarks that will check that the code improves the

efficiency with respect to the old one.
5. Actual implementation of the code.
6. Testing.

Obviously, steps 5 and 6 will need some iteration to fix possible bugs and assure everything
works as expected. It is possible that even some of the tests in steps 3 and 4 have to be
redefined once the actual implementation has started.
The documentation of all the code will be a constant through all the method and will occur in
parallel in every step. Doxygen documentation will be used, following the conventions
outlined by the ROOT guidelines. The code implemented will always follow the ROOT
coding conventions.

Then, all deliverables will be composed of three items:

1. The code that implements the new functionality.
2. The test that checks that every new or modified function works.
3. The benchmark that checks that the efficiency is improved.

The code implementing the functionality will be submitted to the main ROOT repository
through a pull request, whereas the tests and benchmarks will be submitted to the roottest
repository with a parallel pull request. It is important to note that ROOT has a continuous
integration system that will assure every pull request passes the tests from roottest and that
it follows the coding style. The test driven development will assure every chunk of code that
is added to the repo will be tested and, if something fails, we will be notified immediately.

The main tasks enumerated in the project description have their own needs, so the following
subsections are dedicated to detail the issues of each one of them, as far as I know to this
day.

http://hepsoftwarefoundation.org/gsoc/proposal_ROOTvectorization.html
https://root.cern.ch/coding-conventions
https://root.cern.ch/how/formatting-comments-doxygen
https://github.com/root-project/root
https://root.cern.ch/coding-conventions
http://cdash.cern.ch/index.php?project=ROOT
https://github.com/root-project/roottest
http://cdash.cern.ch/index.php?project=ROOT
https://github.com/root-project/roottest

High-Priority Tasks

Completion of Parallelization and Vectorization of all the Fitting Methods
Available in ROOT

To this day, only Binned Chi2 and Unbinned Likelihood fitting methods are adapted (see
Evaluate<T>::EvalChi2 and Evaluate<T>::EvalLogL in FitUtil namespace, in the
GSoC branch of Xavier’s fork).

The main task here is to vectorize and parallelize the rest of the methods; i.e., to adapt the
classes Chi2FCN, LogLikelihoodFCN and PoissonLikelihoodFCN.

The recent changes on FitUtil.h and {Un,}BinData.{h,cxx} will be useful here.

Adapt Gradient Function Interfaces for Thread-Based Parallelization and
Vectorization

The gradient function interfaces need to be generalized in order to be able to implement
parallelization and vectorization. This task is probably the largest one, as there are several
classes that need to be templated and the changes to their children classes should be taken
with care.

To this day, the class IParametricGradFunctionMultiDim has been templated to
IParametricGradFunctionMultiDimTempl<T> (see 116ffbe), change that is based on the
generalization of the class IParamMultiFunctionMultiDim in the class
IParametricFunctionMultiDimTempl<T>. WrappedMultiTF1Templ inherits from
IParametricGradFunctionMultiDimTempl<T>, so it should be studied before starting the
implementation.

The fitting methods depend also on these classes, particularly on the
DoParameterDerivative function, which is a virtual function that has to be implemented by
the classes inheriting from them.

Particular care should be given to the methods EvaluatePoissonLogLGradient,
EvaluateChi2Gradient and EvaluateLogLGradient in FitUtil namespace.

Vectorization of TFormula and “Predefined ROOT Functions”

TFormula receives a const char* string from the user, parses it to create a formula and
eventually evaluates it. The goal of this task is to vectorize this class, which will automatically
vectorize every user-defined function.

In order to accomplish this task, the parsing of the parameters should be adapted, their
types should be templated to generalize the backend vectorized type and the predefined
functions (gaus, landau, expo, crystalball, breitwigner, cheb[0-9] and

bigaus) should be vectorized. This has to be previously studied, as it is possible that the

https://github.com/xvallspl/root/commit/116ffbe7aab169f4963b422be1f60679e6bbf9ae#diff-9db57289303d941fe946f4c1285fdb1aR109
https://github.com/xvallspl/root/blob/gsoc/math/mathcore/inc/Fit/FitUtil.h#L323

vectorization of TFormula gives us for free the vectorization of some of these predefined
functions.

Vectorization of Most Used Mathematical and Statistical Functions in ROOT::Math
and TMath

In order to actually improve the efficiency of the final user-defined code, the vectorization of
ROOT should also cover the most usual functions in Math and TMath.

This task should be straightforward, and the only difficulty may reside in the templating of the
functions to cover both the vectorized and linear cases. In fact, some of the basic functions
are already implemented in VecCore, and the work would reduce to just call those functions;
see, e.g., Abs, Exp, SinCos, Log, Sqrt... in VecMath.h file in VecCore repository.

In fact, this task has already been started as, as a test, I have already vectorized, tested and
benchmarked TMath::Gaus (see section Test).

Optional Tasks

There are some libraries in ROOT that implement specific functions used in several
mathematical methods. If time allows it, these functions should also be
vectorized/parallelized.

Special Mathematical Functions

ROOT has a library of special functions, enumerated in the documentation and implemented
in SpecFuncMath{C,M}ore.{h,cxx}. The complexity of this task is similar to the
vectorization of TMath usual functions, and the majority of these functions are implemented
using the functions from the GNU Scientific Library, so its documentation will be also useful.

Statistical Functions

ROOT has a library of statistical functions, enumerated in the documentation, with modules
for Probability density functions, Cumulative distribution functions, Statistical functions for the
truncated distributions and Quantile functions. These methods usually depend on the special
mathematical functions, so this task depends on the previous one.

Timeline
Since 15th May I will be 100% available to work on GSoC. During the coding period (from 30th
May to 29th August) I will be available to work as in a full-time job; i.e., 40 hours a week.

The scheduled actions for each week of the programme are outlined in the following
subsections in a very conservative way. There are some slots in between the coding
periods; these gaps will give me time to do the evaluations, could be used as extra days to
finish delayed work or, hopefully and more probable, can be used as days to start the next
tasks ahead of time.

https://github.com/amadio/veccore/blob/master/include/VecCore/VecMath.h
https://root.cern.ch/doc/v608/group__SpecFunc.html
https://github.com/amadio/veccore/blob/master/include/VecCore/VecMath.h
https://www.gnu.org/software/gsl/manual/html_node/
https://root.cern.ch/doc/v608/group__StatFunc.html

Community Bonding Period (1st May - 29th May)

1st week (1-7): Get used to ROOT as a regular user, read and eventually participate in the
ROOT forum, know the community, investigate cool stuff done with ROOT at CERN :)
2nd week (8-14): Iteratively fine-tune this timeline with the help of the mentors.
3rd week (15-21): Study well-known vectorization techniques, understand VecCore library
internals.
4th week (22-28): Study the integration of VecCore library with ROOT. Get used to fitting
methods and the gradient interfaces.

1st Coding Period (30th May - 26th June)

1st week (30-2): Study of Math and TMath usual functions to decide the methods that have to
be vectorized. Code the tests that the new methods should pass.
2nd week (5-9): Implementation of the vectorization of the Math and TMath methods.
3rd week (12-16): Finish the testing and benchmarking and submit a pull request.
4th week (19-23): Study Fitting methods and gradient interfaces and define which of them
should be vectorized/parallelized . Start defining the tests that the code should pass. 1

2nd Coding Period (30th June - 24th July)

1st week (30): Finish tests and start coding.
2nd week (3-7): Finish coding, make sure the code passes the test and submit a pull request
with all the vectorized Fitting methods.
3rd week (10-14): Study needed work for adapting the gradient function interfaces. This is
probably the most difficult part, so it should be done with care . Define the tests needed to 2

check the gradient adaptation has been implemented correctly.
4th week (17-21): Start coding, probably templating first the corresponding code and making
sure everything come together fine. Depending on the study of the previous week, a first pull
request can be submitted.

3rd Coding Period (28th July - 29th August)

1st week (30-4): Finish coding and start testing and benchmarking.
2nd week (7-11): Finish the testing and submit a pull request with the final gradient code.
3rd week (14-18): Define the tests to vectorize evaluation of TFormula and start
implementing the vectorization.
4th week (21-25): Finish the code, make sure it passes the tests and submit a pull request.
Last two days (28-29): Proofread all the documentation (it should have been written every
time a function was modified or added). Submit a pull request with the possible typos.

1 Some of the fitting methods depend on the gradient interfaces, so both tasks could run in parallel
sometimes.
2 Some information would be available from the previous task, as the interdependency between them
is strong. It is highly possible that some of the work is already done from the previous task.

https://root-forum.cern.ch/

Schedule Conflicts

I have no schedule conflicts a priori, since I will not be studying nor working for any other
project. I would probably spend some of my free time searching for a job to start when GSoC
finishes, so the only conflict that could arise would happen if I have to attend a job interview.
In such a case, I could exceptionally work more hours the previous or following days to make
up the time spent in the interview.

However, unexpected schedule conflicts could cause a delay on some deliverables. In this
case, I will get in contact immediately with the mentors to explain the situation and discuss a
solution with which both parts agree.

In any case, the proposed timeline is very conservative, and there are some spare days in
between the coding periods that can be used in these situations. The priority for these days
is:

1. Submit the evaluations (this should not take more than half a day).
2. Finish possible unfinished work from the previous days.
3. Get a head start on the work of the following days.

Management of Coding Project
As a basic rule, I plan to be in contact with the mentors on a daily basis, so every change on
the timeline, the deliverables expected, or any other problem will be solved as soon as
possible.

I am used to commit quite a lot, modifying things and fixing the possible errors in a fast
iteration loop, with one or more commit per day. The pull requests should be submitted with
every new implemented feature (the timeline shows the most important ones), or in some
cases when a bunch of functions have been adapted (as in the case of TMath, where it
makes no sense to submit a pull request per function). I can adapt to the frequency of
commits and pull requests preferred by the mentors, and my personal commits (probably
one or more per day) can be squashed in one or two commits per pull request if the main
developers prefer it that way.

Concerning the repositories, forks, branches and general project management, I am open to
do it in the easiest way for the main developers to merge the code when it is ready.

Test
I have been in constant contact with Xavier Valls from 24th March until the application
deadline, exchanging emails almost every day discussing the project information and this
proposal. In these emails I was asked to code one or more of some proposed tests. The test
I finally chose consisted in the vectorization of TMath::Gaus function; the patch sent to the
mentors with the code implementing this new function can be see in this gist.

The first thing I tried when coding the test was to add the new function, TMath::Gaus_v, to
the common header, TMath.h. However, when including Math/Math_vectypes.hxx in
TMath.h, a bug appeared: the compiler complained about some undefined references of Vc.
I explained the problem to Xavier, and the situation ended in fixes decoupling TMath.h from
Core in ROOT/master (see the commit f32175e and this open pull request).

In the meantime, I added the declaration of the new function to a different file,
math/mathcore/inc/TMath_VecTest.h, to avoid the problem, whose solution was outside
the scope of the test. The new file looks like this:

#include "Math/Math_vectypes.hxx"

namespace TMath{
Double_v Gaus_v(Double_v x, Double_t mean=0, Double_t sigma=1,

 Bool_t norm=kFALSE);
}

This function is similar to TMath::Gaus, except for the x parameter, that is now a Double_v.

The new function was implemented in math/mathcore/src/TMath.cxx, based on the
implementation of the linear version and using the API provided by VecCore, as can be seen
in the use of the masks or of the vectorized functions such as Exp:

Double_v TMath::Gaus_v(Double_v x, Double_t mean, Double_t sigma, Bool_t norm)
{

 if (sigma == 0)
 return 1.e30;

 Double_v arg = (x-mean)/sigma;

 // for |arg| > 39 result is zero in double precision
 vecCore::Mask_v<Double_v> mask = !(arg < -39.0 || arg > 39.0);

 // Initialize the result to 0.0
 Double_v res(0.0);

 // Compute the function only when the arg meets the criteria,
 // using the mask computed before

 vecCore::MaskedAssign<Double_v>(res, mask,
 vecCore::math::Exp<Double_v>(-0.5 * arg * arg));

https://github.com/root-project/root/pull/475
https://github.com/root-project/root/commit/f32175eb0b4da1b95180f029efe2064d90c93b0e
https://gist.github.com/agarciamontoro/c5a302a9d2d17acf89946006be5aa73b

 if (!norm)
 return res;

 return res/(2.50662827463100024*sigma); //sqrt(2*Pi)=2.50662827463100024
}

In order to test that the new function works as the old one with an improved efficiency, a
benchmark integrated with a simple test has been implemented in the file
math/mathcore/test/vectorizationTest.cxx:

#include "Math/Random.h"

#include "TRandom1.h"
#include "TStopwatch.h"
#include "TMath_VecTest.h"

#include <iostream>
#include <random>

// using namespace ROOT::Math;

using namespace ROOT;
using namespace std;

int main(){
// Test and vectorization size

const int numRepetitions = 1000;
const int inputSize = 100000;
const int vecSize = vecCore::VectorSize<Double_v>();

// Vectorized and linear input

Double_v vectorInput[inputSize];
Double_t linearInput[inputSize * vecSize];

// Vectorized and linear output

Double_v vectorOutput[inputSize];
Double_t linearOutput[inputSize * vecSize];

// Parameters vector

Double_t mean[inputSize];
Double_t sigma[inputSize];

// Randomize input data and parameters

TRandom1 rndmzr;
rndmzr.RndmArray(inputSize * vecSize, linearInput);
rndmzr.RndmArray(inputSize, mean);
rndmzr.RndmArray(inputSize, sigma);

// Set -100 < mean < 100 and 0 < sigma < 200

for (size_t i = 0; i < inputSize; i++) {
 mean[i] = mean[i] * 200 - 100;
 sigma[i] *= 200;

}

// Copy input linear data to the vectorized array

for (size_t caseIdx = 0; caseIdx < inputSize; caseIdx++) {
 for (size_t vecIdx = 0; vecIdx < vecSize; vecIdx++) {
 vectorInput[caseIdx][vecIdx] = linearInput[vecSize * caseIdx + vecIdx];
 }

}

// Clocks to measure (l)inear and (v)ectorized performance

TStopwatch clock_l, clock_v;

// Vectorized computation

clock_v.Start();
for (size_t _ = 0; _ < numRepetitions; _++) {

 for (size_t caseIdx = 0; caseIdx < inputSize; caseIdx++) {
 vectorOutput[caseIdx] = TMath::Gaus_v(vectorInput[caseIdx],
 mean[caseIdx], sigma[caseIdx]);
 }

}

clock_v.Stop();

// Linear computation

int idx;
clock_l.Start();
for (size_t _ = 0; _ < numRepetitions; _++) {
 for (size_t caseIdx = 0; caseIdx < inputSize; caseIdx++) {

 for (size_t vecIdx = 0; vecIdx < vecSize; vecIdx++) {
 idx = caseIdx * vecSize + vecIdx;
 linearOutput[idx] = TMath::Gaus(linearInput[idx], mean[caseIdx],
 sigma[caseIdx]);
 }

 }

}

clock_l.Stop();

// Check

for (size_t caseIdx = 0; caseIdx < inputSize; caseIdx++) {
 for (size_t vecIdx = 0; vecIdx < vecSize; vecIdx++) {
 Double_t diff = TMath::Abs(linearOutput[caseIdx*vecSize + vecIdx] -
 vectorOutput[caseIdx][vecIdx]);
 if(diff > 1e-15)
 std::cout << diff << std::endl;
 }

}

cout << "Linear: "; clock_l.Print();
cout << "Vectorized: "; clock_v.Print();
cout << "SPEEDUP: x" << clock_l.RealTime() / clock_v.RealTime() << endl;

}

This benchmark was executed in my machine, whose processor (i7-930) has the extension
SSE4.2 but not AVX2; as FMA is not present in SSE4.2, the upper bound of the speedup is
2. Running this benchmark in this specific configuration, the mean speedup obtained is of
approximately 1.7.

Student Information

Bio of Student
My name is Alejandro García Montoro, I recently graduated with a Bachelor’s degree in
Computer Science and a Bachelor’s degree in Mathematics at the University of Granada,
Spain.

Currently, I have a full time job at the Free Software Office of the University of Granada,
working for the CERN team that is developing KiCad. The contract with CERN finishes May
15th and therefore I will have enough time for GSoC if I am selected. My work there can be
seen at Launchpad.

My experience with parallelization comes mainly from my Bachelor's thesis: I developed a
relativistic raytracer implemented with a CUDA-parallelized RungeKutta 5(4) solver with
adaptive size (see my GitHub repo, with both the software and the thesis).

Back in 2014 I participated in the BEXUS 19 mission with GranaSAT team: we successfully
tested a prototype of an attitude determination system for a cubesat on a stratospheric
balloon launched from Kiruna, Sweden. I was in charge of all the communication software
plus one of the prototypes: a horizon sensor. All of my code (in C) can be found at Github.

Last summer I contributed to OpenSEMBA, an open source suite for electromagnetic
simulations developed at my university. During my contribution I implemented the Vector
Fitting method from B. Gustavsen and A. Semlyen in C++.

Contact Information

Name: Alejandro García Montoro

Postal address: C/Cañaveral, 8, 7B, 18003, Granada, Spain

Telephone: +34606217192

Emails: alejandro.garciamontoro@gmail.com
agarciamontoro@correo.ugr.es

Telegram: @agarciamontoro

Skype: alejandro.garciamontoro

Hangouts: alejandro.garciamontoro@gmail.com

IRC: xiroux

Github: @agarciamontoro

mailto:alejandro.garciamontoro@gmail.com
https://github.com/agarciamontoro/TFG/tree/master/Software/Raytracer
https://t.me/agarciamontoro
mailto:alejandro.garciamontoro@gmail.com
mailto:agarciamontoro@correo.ugr.es
https://github.com/OpenSEMBA/VectorFitting
https://github.com/OpenSEMBA/VectorFitting
https://code.launchpad.net/~agarciamontoro/kicad/+git/kicad
https://github.com/agarciamontoro/TFG/tree/master/Documentation/Report
https://github.com/agarciamontoro/
https://github.com/agarciamontoro/granasatServer

Student Affiliation

Institution: University of Granada, Spain

Program: Double Degree in Computer Science and Mathematics

Stage of completion: 100%

